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Although a lot of attention in the topology optimization literature has focused on the
optimization of eigenfrequencies in free vibration problems, relatively little work has been
done on the optimization of structures subjected to periodic loading. In this paper, we
propose two measures, one global and the other local, for the minimization of vibrations of
structures subjected to periodic loading. The global measure which we term as the &&dynamic
compliance'' reduces the vibrations in an overall sense, and thus has important implications
from the viewpoint of reducing the noise radiated from a structure, while the local measure
reduces the vibrations at a user-de"ned point. Both measures bring about a reduction in the
vibration level by moving the natural frequencies which contribute most signi"cantly to
the measures, away from the driving frequencies, although, as expected, in di!erent ways.
Quite surprisingly, the structure of the dynamic compliance optimization problem turns out
to be very similar to the structure of the static compliance optimization problem. The
availability of analytical sensitivities results in an e$cient algorithm for both measures. We
show the e!ectiveness of the measures by presenting some numerical examples.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Topology optimization, which involves distributing a given amount of material in a domain
subjected to certain loading and boundary conditions, in a con"guration of macroscopic
solid and void regions so as to optimize a given performance functional, has been applied
extensively for static problems (see, for example, [1}4]). Typically, the functional that is
optimized is the compliance which is the work done by the loads; minimizing the
compliance corresponds to maximizing the sti!ness of the structure.

For dynamic problems, attention has been focused primarily on the optimization of
natural frequencies of vibrating structures (e.g., [5}9]). The problem of minimization of
vibrations of structures subjected to periodic loading is also of great importance since the
major source of vibration, and hence noise, in a machine is a periodic force due to rotating
components. Thus, the reduction of vibration of structures subjected to periodic
loading could have great practical implications in reducing the noise radiated in many
practical situations, ranging from portable electric tools and washing machines to cars and
ships.

Ma et al. [9] brie#y discuss the problem of reducing the vibrations of structures subjected
to periodic loading. They formulate a &&dynamic compliance'', the minimization of which
results in reduced vibration of the structure. However, one of the shortcomings of this
proposed measure is that, unlike the static compliance, it is not a positive-de"nite measure.
Thus, if the driving frequency of the load is slightly higher than the fundamental frequency,
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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say, then their dynamic compliance becomes negative (see equation (30) in reference [9]),
and minimization of this function drives the system towards resonance instead of away from
it. They also ignore damping in their work. To remedy these shortcomings, we propose
a new de"nition of dynamic compliance for structures subjected to periodic loading, and
show that it is a positive-de"nite measure in the sense that it is positive in the presence of
vibrations, and is zero if and only if the structure is static. Thus, minimizing the dynamic
compliance drives the structure towards the static state.

Although the dynamic compliance is useful in reducing vibrations in a global or overall
sense, in certain applications, it is desirable to minimize the frequency response amplitude at
a given point in the structure, although it might well be at the expense of increasing the
amplitudes at other points in the structure, e.g., it is desirable to minimize the amplitude of
vibration at the sonar compartment of a ship. Although several works deal with the
minimization of frequency response amplitudes of a structure (e.g., [10, 11]), none of them, to
the best of our knowledge, use techniques from topology design. It is now well known that
dramatic reductions can be obtained by using topology rather than shape design. Indeed, we
show that in almost all the examples that we consider, the reductions in amplitudes are more
than an order of magnitude, and sometimes even close to two orders of magnitude.

Throughout this work, we only consider the minimization of vibrations of light
#uid-loaded structures in the steady state, i.e., the state reached after the initial transients
have died out due to the presence of damping. We also assume a linear vibration theory, so
that the frequency of the response in the same as that of the driving frequency.

The organization of the remainder of the paper is as follows. In section 2, we motivate and
de"ne the global measure, namely, the dynamic compliance for a continuum structure.
Using this de"nition, we formulate the topology optimization problem in section 3. The
details of the formulation for the local measure, namely, the frequency response amplitude,
are presented in section 4. Section 5 discusses the solution method, while section 6 presents
some numerical examples to show the e!ectiveness of the formulations. The conclusions
from this study are presented in section 7. In what follows, vectors are denoted by boldface
small letters, and matrices are denoted by boldface capital letters.

2. THE DYNAMIC COMPLIANCE

To begin with, we de"ne the dynamic compliance for a periodic load with only
one excitation frequency, and later extend the de"nition to the case when the load is
a superposition of several harmonics. The dynamic compliance that we propose is simply
the average input power over a cycle. To motivate this de"nition, consider the simple
one-dimensional equation of a mass}spring}dashpot system driven by a periodic force
given by f

�
cos�( t. The governing equation of this system is

mxK#cxR #kx"f
�
cos�( t,

where m is the mass, c is the damping constant, and k is the spring constant. Due to the
presence of damping, the transients die out, and the steady state solution for the
displacement and velocity is given by

x"A cos(�( t!�), xR "!�L A sin(�( t!�),

where � is the phase lag, and the amplitude, A, is given by

A"

f
�

�(k!m�L �)�#c��L �
.
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Hence, the dynamic compliance is given by

J
�
"

�L
2� ��

2�/�L

�

( f
�
cos�( t) xR dt�

"!

�(
2� ��

2�/�(

�

( f
�
cos�( t) (�( A sin(�( t!�)) dt�

"�
�

�( Af
�
sin �

"

1

2

�L � f �
�
c

[(k!m�L �)�#c��L �]
.

From the above expression, it is clear that the closer the system is to resonance, the higher is
the dynamic compliance. Since �( and f

�
are given, and assuming that c is also given, the

values of k and m which minimize the above objective function (subject to some constraint)
will automatically be such that the driving frequency �( is &&far'' from the natural frequency

�
�
"�k/m.
For a continuum structure, the corresponding de"nition for the dynamic compliance

(assuming that the prescribed displacement is zero) is

J
�
"

1

¹ �
�

�
���

�

t� ' vd�#��

b ' v d��dt,

where v is the velocity "eld, b"b
�
cos�( t is the prescribed body force on �, t� "t�

�
cos�( t is

the prescribed traction on �
�
, and ¹"2�/�( is the time period. To see that this measure

is positive de"nite in the purely mechanical theory that we are considering (i.e., when there is
no heat input and heat conduction), consider the "rst law of thermodynamics

d

dt �� �
1

2
�� v ' v#e�d�"��

�

t� ' v d�#��

b ' v d�,

where �� is the density of the continuum, and e is the speci"c internal energy. Thus, for vO0

�
�

�
���

�

t� ' vd�#��

b ' vd��dt"��� �
1

2
�� v ' v#e�d��

�

�

"���

e d��
�

�

'0,

since the kinetic energy has the same value at times 0 and ¹, and since the internal energy
increases due to dissipation (the contribution to e due to the elastic strain energy, however,
is the same at times 0 and ¹ ). Note that the value of J

�
is zero if and only if v"0.

3. TOPOLOGY DESIGN FOR DYNAMIC COMPLIANCE MINIMIZATION

We are interested in "nding a con"guration of solids and void regions within a domain
� that minimizes the dynamic compliance of the resulting structure, and such that the total
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volume of material equals a speci"ed volume <M . No restriction is placed on the
connectedness of the solid part of �. We introduce the indicator function � (x) given by

�(x)"�
0

1

if x3�
�
,

if x3�
�
,

(1)

where �
�
and �

�
denote the void and solid regions in � respectively. The volume of the

structure is given by ���(x) d�, and the elasticity tensor at each point is C"�(x)C
�
, where

C
�
is the elasticity tensor of the solid material.
We shall present the remaining formulation in the context of the "nite element method.

The details of the formulation of the "nite element dynamic equations can be found, for
example, in references [12}14]. The governing equations for the case when the loading is
harmonic are given by

MuK#Cu� #Ku"f
�
cos�( t,

where u is the displacement vector, f
�
cos�( t is the periodic driving force vector, and M,

C and K are the mass, damping and sti!ness matrices respectively. In order to solve the
above set of equations for u, we follow the usual strategy of solving

MxK#Cx� #Kx"f
�
ei�( t

and taking u to be the real part of x. Assuming x to be of the form (x
�
#ix

�
)ei�( t, and

substituting into the above equation, we get

[K!�; �M#i�( C] (x
�
#ix

�
)"f

�
. (2)

Separating the real and imaginary parts, we get

(K!�; �M)x
�
!�; Cx

�
"f

�
, (3)

(K!�; �M)x
�
!�; Cx

�
"0. (4)

From equation (4), we get

x
�
"!

1

�(
C��(K!�; �M)x

�
, (5)

which on substituting into equation (3) yields

K	 x
�
"!�( f

�
, (6)

where

K	 "(K!�; �M)C��(K!�; �M)#�( �C. (7)

SinceM,C and K are symmetric and positive de"nite, we see that the new &&sti!ness matrix'',
K	 , is also symmetric and positive de"nite. Hence, the problem of determining x

�
can also be

stated as a minimization of a &&potential energy'',� �, where

� (y)"�
�
y ) K	 y#�; y ) f�

.

�The reason for putting the terms sti!ness matrix and potential energy in quotes is that their units are actually
those of sti!ness/time and power respectively. We use this terminology because of the obvious parallel which our
problem has to a static compliance minimization problem.
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At the solution x
�
, the value of � is

� (x
�
)"!�

�
x
�
)K	 x

�
.

As mentioned, the displacement vector u is given by the real part of (x
�
#ix

�
)ei�( t. Thus,

the displacement and velocity vectors are given by

u"(cos�( t)x
�
!(sin�( t)x

�
,

v"!�( [(sin�( t)x
�
#(cos�( t)x

�
].

The dynamic compliance is given by

J
�
"

�L
2� �

2�/�L

�

(f
�
cos�( t) ) vdt

"!�
�
�( f

� ) x
�

(8)

"�
�
x
�
) K	 x

�
. (9)

Thus, we have

J
�
"!� (x

�
).

The reason why we consider the dynamic compliance as a global measure of vibrations is
evident from equation (9).

As is usually done, we convert our original discrete optimization problem to a continuous
one by replacing the indicator function in equation (1) by the vector of continuous design
variables, �. Thus, we now write our optimization problem as: Find the vector of optimum
design variables, �*, and the vector of associated &&displacements'', x

�
, that solves

max
�

min
y

�(�, y)

subject to appropriate constraints on the design variables. The inner subproblem in the
above statement solves the problem of "nding the &&displacement'', x

�
, for a given set of

design variables, �, while the outer subproblem solves the problem of minimizing the power
input (or, alternatively, maximizing the &&potential energy'').

The vectors x
�
and x

�
can be found by directly solving equation (2) using a complex solver,

or by solving equations (3) and (4), i.e.,

�
K!�( �M

�; C
!�( C

K!�; �M� �
x
�

x
�
�"�

f
�
0�.

Note that it is preferable to use the former strategy, both in terms of e$ciency and storage,
since the matrix in the above equation is neither symmetric nor banded. Once x

�
is found,

the objective function is found using equation (8).
The sensitivity of the objective function with respect to a design variable, �

�
, can be found

by using

d�

d�
�

"

1

2
x
�
)

K	

�

�

x
�
, (10)
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since 
�/
y"0 at the &&equilibrium displacements'', x
�
. To "nd the sensitivity in a more

convenient form, we need to simplify equation (10). First note that since C��C"I, we have


C��


�
�

C#C��

C

�

�

"0,

which implies that


C��


�
�

"!C��

C

�

�

C��. (11)

Using the expression for K	 given by equation (7) in conjunction with equation (11), we get


K	

�

�

"




�

�

(K!�; �M)C�� (K!�; �M)!(K!�; �M)C��

C

�

�

C��(K!�( �M)

#(K!�; �M)C��




�
�

(K!�; �M)#�( �

C

�

�

.

Using equation (5), and the symmetry of (K!�; �M) and C, we have

x
�
)

K	

�

�

x
�
"�; � �x�

)

C

�

�

x
�
!x

�
)

C

�

�

x
��!2�( x

�
)




�

�

(K!�; �M)x
�
.

Thus, the sensitivity of the objective function given by equation (10) can be written as

d�

d�
�

"

�( �
2 �x�

)

C

�

�

x
�
!x

�
)

C

�

�

x
��!�( x

�
) �


K

�

�

!�( �

M

�

�
� x�

. (12)

Note that once the "nite element analysis has been conducted, the sensitivity computation is
quite trivial due to the explicit expression given above. The sensitivity of the constraint
(which will typically be an explicit function of the design variables) is also easily computed.

In reality, the driving force is a superposition of several harmonics, i.e.,

f"
	
�
���

f
�
cos�(

�
t.

Due to the linear nature of the governing equations, the total displacement, u, is obtained
merely by superposing the displacement solutions for each loading component. The
problem of determining (x

�
)
�
corresponding to each frequency component, �(

�
, can be

written as

min
y
�
,y

�
,2, y

	

� (y
�
, y

�
,2, y

	
),

where the potential energy functional is now given by

� (y
�
, y

�
,2, y

	
)"

	
�
���
�
1

2
y
�
)K	

�
y
�
#�;

�
y
�
) f

��.
We noted above that the total displacement can be obtained by superposing the

displacement solutions corresponding to each frequency component. It is, however, not
obvious that the overall dynamic compliance is the sum of the dynamic compliances
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corresponding to each individual frequency. We now prove this. We need to consider two
cases:

(1) The frequencies �(
�
are an integer multiple of some base frequency �(

�
, i.e., �(

�
"n

�
�L

�
,

where n
�
is an integer (e.g., all the �(

�
are rational numbers).

(2) It is not possible to express all the �(
�
in the above manner (e.g., �(

�
"�2 and

�(
�
"�3.)

Since in the second case, the loading is not periodic, and also since each irrational number
can be approximated arbitrarily closely by a rational one, we focus only on the "rst case. In
this case, the driving force is periodic with a period of ¹"2�/�(

�
since

cos[�(
�
(t#¹)]"cos(�(

�
t#2�n

�
)"cos�(

�
t ∀i.

Thus, the force in this case can be expressed as

f"
	
�
���

f
�
cos n

�
�(

�
t. (13)

Conversely, any periodic force can be approximated arbitrarily closely by a trigonometric
polynomial of the form

f"f
�
#



�
���

( f ���
�

cos n�L
�
t#f ���

�
sin n�L

�
t),

where N is chosen large enough to get the required degree of accuracy. Since the term f
�

does not contribute to the dynamic compliance, and since the dynamic compliance
corresponding to cos n�L

�
t and sin n�L

�
t for any n is the same, it su$ces to consider the

forcing function given in equation (13).
The average power input over a cycle for this forcing function is

J
�
"

�L
�

2� �
2�/�(

�

�

f ) v dt

"

�(
�

2� �
2�/�(

�

�
�

	
�
���

f
�
cos n

�
�L

�
t� ) �

	
�
���

!�(
�
[(sin n

�
�L

�
t)(x

�
)
�
#(cos n

�
�L

�
t)(x

�
)
�
]�dt.

Using the orthogonality of the sin and cos functions, i.e.,

�
2�/�(

�

�

(cosm
�
�L

�
t)(cos n

�
�L

�
t) dt"�

0

�/�(
�

if m
�
On

�
,

if m
�
"n

�
,

�
2�/�(

�

�

(cosm
�
�L

�
t)(sin n

�
�L

�
t) dt"0 ∀m

�
, n

�
,

we get

J
�
"!

1

2

	
�
���

�L
�
f
�
) (x

�
)
�

"

	
�
���

1

2
K	

�
(x

�
)
�
) (x

�
)
�
.
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The dynamic compliance and the potential function are related as

J
�
"!�((x

�
)
�
, (x

�
)
�
,2, (x

�
)
	
).

From the above equations, the optimization problem for the case when the forcing function
is a superposition of several harmonics, can be written as:

Find the vector of optimum design variables �*, and the vector of associated
&&displacements'', (x

�
)
�
, corresponding to each loading frequency �(

�
, that solves

max
�

min
y
�
, y

�
,2, y

	

�(�, y
�
, y

�
,2, y

	
)

subject to appropriate constraints on the design variables. The sensitivity of the
above objective function with respect to a design variable is obtained by superposing the
sensitivities for each individual frequency as given by equation (12), i.e., if (d�/d�

�
)
�
denotes

the sensitivity of the objective function corresponding to each frequency component �(
�
,

then

d�

d�
�

"

	
�
���
�
d�

d�
�
�
�

. (14)

4. FREQUENCY RESPONSE AMPLITUDE MINIMIZATION

As discussed in the Introduction, although the dynamic compliance is a good measure for
minimizing vibrations in a global or overall sense, in certain applications, one wants to
minimize the vibration amplitude at a certain user-de"ned point in the structure. We now
discuss this problem, again "rst considering the case of harmonic loading. In what follows,
z denotes the quantity x

�
#ix

�
, a ) b denotes �

�
a
�
b
�
, and the superscript &&* '' denotes the

complex conjugate.
Let q"[0 02 1 0 2] be the vector with 1 at the degree of freedom (d.o.f.) where the

amplitude of vibration, A, is to be minimized, and 0 elsewhere. Let �"q ' z, �*"q ) z*.
Then we have

A�"�*�. (15)

To keep the form of the optimization problem similar to the dynamic compliance
problem, we write it as:

Find the vector of optimum design variables, �*, that solves

max
�

!A

subject to the equations of equilibrium and appropriate constraints on the design variables.
To compute the sensitivity of the objective function, (!A), with respect to a design

variable, �
�
, we "rst compute d�/d�

�
. Di!erentiating (2), and using the fact that f

�
and �( are

independent of �
�
, we get

dz

d�
�

"![K!�; �M#i�( C]����

K

�

�

!�; �

M

�

�
�#i�(


C

�

�
� z.
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Since q is independent of �
�
,

d�
d�

�

"!q ) [K!�; �M#i�( C]����

K

�

�

!�; �

M

�

�
�#i�(


C

�

�
� z. (16)

Due to the symmetry of the K, M and C matrices, we can write the above equation as

d�
d�

�

"!a ) b, (17)

where

a"[K!�; �M#i�( C]�� q,

b"��

K

�

�

!�; �

M

�

�
�#i�(


C

�

�
� z.

Note that computing the sensitivity using the expression given above is more e$cient than
computing it using (16) since q is a constant vector, and the factored complex sti!ness
matrix used in computing z can be used in computing a by treating q as a second load
vector.

The sensitivity of A is obtained by di!erentiating both sides of (15):

2A
dA

d�
�

"

d�*
d�

�

�#�*
d�
d�

�

"�
d�
d�

�
�
*

�#�*
d�
d�

�

"2Re ��*
d�
d�

�
�

"!2Re[�*(a ) b)],

where Re denotes the real part of the argument, and the last step follows from (17). Thus, we
have

!

dA

d�
�

"

1

A
Re[�*(a ) b)]. (18)

Now, we consider the case when the driving force is given by equation (13). Although
the total displacement can be obtained by superposing the displacement solutions
corresponding to each frequency component, i.e.,

u"

	
�
���

[cos�;
�
t(x

�
)
�
!(sin�(

�
t)(x

�
)
�
], (19)

"nding a closed-form expression for the maximum amplitude in general does not seem to be
possible. Of course, at any point on the structure, one has the bound

A)

	
�
���

A
�
,
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where A is the maximum amplitude obtained from (19), and A
�

is the amplitude
corresponding to each load component, f

�
cos�(

�
t. A naive idea would be to try and

minimize �	
���
A

�
in the hope that the actual amplitude, A, would also be reduced. But it is

not hard to construct examples where �	
���
A

�
reduces, but A increases. Of course, if the

minimum value of �	
���
A

�
is lower than the starting value of A then a reduction in the

amplitude does result, though again it will, in general, not be the minimum amplitude
possible. In view of this discussion, we shall, for the purpose of amplitude minimization,
restrict overselves to the case of a harmonic driving force. Even if one were to assume
�	

���
A

�
to be the objective function, the numerical scheme presented in the next section is

valid; the sensitivity of the objective function required by the optimality criterion method is
obtained simply by summing up the individual sensitivities given by (18).

5. SOLUTION METHOD

Since most of the noise in machinery is generated by the vibration of plate or shell
structures, we present numerical examples for plate structures. We assume a uniform
thickness h

�
for each element i, and use the normalized quantities �

�
"h

�
/h

���
, where h

���
is

the maximum allowable thickness, as the set of design variables. However, we note that in
the formulation there is no restriction on the choice of design variables. Other possible
choices of design variables could be the magnitudes of lumped masses or springs attached at
certain points on the domain, or the thickness and spacing of beam sti!eners attached
to the plate or shell structure, and so on. The constraint that we impose is the volume
constraint, i.e.,

<"�
�

hdA)<M

where <M is the speci"ed volume.
While implementing a plate "nite element model, care has to be taken that &&locking'' does

not take place. We have implemented the MITC4 and MITC9 elements introduced by
Bathe and co-workers (see Reference [12] and references therein) which are based on the
Reissner}Mindlin plate model. The element sti!ness matrix is given by

K


"�

�

��
�

�

��

(B��C�
B�#B��C�

B�) �J �dr ds.

In the above equation, r and s denote natural co-ordinates, �J � is the determinant of the
Jacobian matrix, B� and B� are the bending and transverse shear strain-displacement
matrices, respectively, and C

�
and C

�
are given by

C
�
"

Eh	

12(1!��)

1 � 0

� 1 0

0 0
1!�

2

, C
�
"

Ehk

2(1#�) �
1

0

0

1�,

where E is Young's modulus, � is the Poisson ratio, k is the shear-correction factor (typically
chosen as 5/6), and h is the thickness of the plate. The element mass matrix is given by

M


"�

�

��
�

�

��

N�C
	
N �J � dr ds,



TOPOLOGY DESIGN OF STRUCTURES 697
where N is the matrix of interpolation functions for the transverse displacement and
rotations, and

C
	
"

�� h 0 0

0
�N h	
12

0

0 0
�N h	
12

,

where �� denotes the density of material. From the above equations, it is clear that K and
M depend on the thickness h only through the matricesC

�
,C

�
andC

	
. Thus, the sensitivities


K/
�
�
"h

���

K/
h

�
and 
M/
�

�
"h

���

M/
h

�
can be easily calculated.

We use the simple but widely used Rayleigh (or proportional) damping model where we
assume

C"�M#
K.

We would like to emphasize that although we choose this model as an example, the choice
of C in the formulation is completely general. The constants � and 
 are given by [13]
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where �
�
and �

�
are modal damping parameters corresponding to the two distinct modes

with natural frequencies �
�

and �
�
. One usually chooses �

�
to be the lowest natural

frequency (which ensures that C remains positive de"nite), and �
�

to be the maximum
frequency of interest in the loading or response. In our case, we choose �

�
as mentioned

above, and �
�

as the smallest natural frequency greater than the biggest frequency
component in the loading.

If one were to assume � and 
 as constant it would greatly simplify the sensitivity analysis.
However, due to the dependence of these quantities on the natural frequencies, a more
reasonable assumption, and one that we make for the numerical examples, is to assume the
damping parameters �

�
and �

�
to be constant. However, the computational expense for

"nding the sensitivities of the damping matrix is considerably higher, since a generalized
eigenvalue problem has to be solved at each iteration, as we now show.

The sensitivity of the damping matrix with respect to a typical design variable �
�
is

given by
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where summation over j ranging from 1 to 2 is implied. The sensitivity computation of
eigenvalues, both simple and repeated, is discussed in reference [15]; the sensitivity of
a simple eigenvalue, �

�
, is given by
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�
(no sum on j),

where �
�
is the eigenvector corresponding to the natural frequency �

�
. Thus, we see that at

least the "rst few eigenvalues and the corresponding eigenvectors need to be computed at
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each iteration. Of course, computation of the eigenvalues and eigenvectors for a given
design is an intrinsic part of any structural optimization strategy for dynamics problems,
and is not a drawback of this particular technique. The cost of this computation can be
signi"cantly reduced if the eigensolver can use the eigenvalues and eigenvectors from the
previous design iteration to iteratively solve the eigenproblem for the current design since
the design perturbations are typically restricted to small values using move limits. One such
iterative scheme is used by the package ARPACK [16]. Our experience was that there
are signi"cant savings in computational time using this strategy as compared to more
conventional methods.

In lieu of an exact solution of the eigenproblem, one can use an approximate reanalysis
procedure at each iteration; one such strategy is described by Chen [17]. Though this
procedure works well for the "rst few iterations, the errors keep magnifying as the design
iterations progress, and the approximate eigenvalues for the "nal converged design can be
signi"cantly di!erent from the actual ones. Thus, although the approximate eigenvalues are
&&far'' from the driving frequency at the end of the optimization process, some of the actual
natural frequencies can be close to it! This is a danger that one has to be aware of while
using any approximation technique for solving the eigenvalue problem. One other
approximation that we tried is to compute � and 
 at the "rst iteration based on an
eigenanalysis, and then maintain them constant for the subsequent iterations until the
design converges, at which stage they are recomputed based on an eigenanalysis and used in
the "nite element analysis in order to get an accurate response. As already mentioned,
maintaining � and 
 constant is not a good assumption, but the hope is that although the
analysis might not be accurate at the intermediate stages, the topologies generated are still
reasonably good. Our "nding was that although this technique worked well for certain
problems, it did not for some others; consequently, we do not use this approximation.
Summarizing, we note that the example solutions presented in section 6 have been obtained
without using any approximation technique for solving the eigenproblem, so that the results
can act as benchmarks for any approximate techniques that are devised later.

Since the sensitivity of the objective function given by equation (14) or (18) can be
negative, we use the modi"ed optimality criterion method proposed by Ma et al. [9]. Using
this method, the density update formula is given by
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where �
�
is either d�/d�

�
or !dA/d�

�
depending on whether dynamic compliance or

amplitude minimization is being carried out, ��
�
stands for the design variable at the kth

iteration, ����
�

is the updated design variable, � is a given parameter, and � is a shift
parameter chosen such that

�
�
#�

d<

d�
�

*0 ∀i.

For the dynamic compliance minimization, we get a value of �"1. For the frequency
amplitude minimization, we "nd that if one uses �"1, there can be oscillation of the
densities of some elements between two values. If one uses an extremely low value of �, then
this problem of oscillation would be alleviated, but on the other hand, convergence can be
quite slow; as a compromise, we use a value of �"0)1 in all our examples, and in addition
reduce the move limits (see discussion below) whenever oscillations occur.
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The Lagrange multiplier � is found iteratively so as to satisfy the volume constraint. If the
maximum change in density variables, ��

	��
, is above a certain tolerance ��

���
, then move

limits are imposed by calculating the new density distribution as

(�)���
�
�

"��#
��

���
��

	��

(����!��).

Note that since �� and ���� satisfy the volume constraint, (�)���
�
�

also automatically satis"es
the volume constraint.

The optimization process is iterative. The required number of eigenvalues and
eigenmodes for the starting design are computed. Then, equation (2) is solved using
a complex solver to "nd x

�
and x

�
. The eigenvalues, eigenvectors, x

�
and x

�
are used to "nd

the sensitivity using equation (14) or (18). Subsequently, the modi"ed optimality criterion
method is used to "nd a new design. The above steps are repeated until the design
converges.

6. NUMERICAL EXAMPLES

In this section, we present numerical examples to show the e!ectiveness of the proposed
measures. There is a huge literature on optimization of structures with a view towards
optimizing the acoustic response. Lamancusa [18] discusses various choices of design
variables and objective functions that have been used*he concludes that acoustic power
when used as an objective function produces the most consistently improved designs. Since
the input power due to a periodic load on a structure is equal to the sum of the power
dissipated in the structure and the acoustic power radiated to the surroundings, it is not
obvious that redesigning the structure so as to minimize the dynamic compliance results in
a reduction of the radiated sound power. However, strong numerical evidence has been
presented in reference [19] to show that at least in the case of lightly loaded (i.e., where the
e!ect of #uid loading can be neglected while analyzing the vibrations of the structure)
ba%ed plates, the reduction obtained in the emitted sound power obtained by minimizing
the dynamic compliance is almost as much as that obtained by minimizing the sound power
directly. However, the great advantage is that, unlike previous approaches that try to carry
out the optimization of the acoustic power directly, and hence need an acoustic analysis
code, there is no need to conduct an acoustic analysis with the current strategy*the
reductions in radiated sound power are obtained as an indirect bene"t while minimizing
the dynamic compliance. Thus, the current strategy could prove very cost e!ective from the
view of reducing noise radiated from light-#uid loaded structures.

Although, we have implemented both the MITC4 and MITC9 plate elements, we present
examples using only the MITC9 elements due to the unstable nature of lower-order
elements (see reference [20] for a detailed analysis). Young's modulus, Poisson ratio and
density are taken to be 210 GPa, 0)25 and 7800 kg/m	 in all the examples. Black regions in
the density plots represents a value of �

	��
(equal to 1), white regions represent a value of

�
	��

(which we have chosen to be 0)1 in all examples), while grey regions represent
intermediate densities. The value of �

	��
is chosen to be non-zero to prevent the mass,

sti!ness and damping matrices from becoming singular. The modal damping parameters
are taken to be �

�
"�

�
"0)01.

Example 1 (Cantilever beam). The candidate domain, loading and boundary conditions are
shown in Figure 1. The maximum allowable thickness is h

	��
"0)5 cm. The distributed load



Figure 1. A cantilever beam subjected to end traction.

Figure 2. Density distribution for the cantilever beam example with dynamic compliance optimization in cases
(a) and (b) and static compliance optimization in case (c): (a) �( "500 rad/s, (b) �( "2500 rad/s, (c) �( "0 rad/s.
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at the free edge is given by 1)5 cos�( tN/cm. Since both the geometry and loading are
symmetric, we consider only half the domain for the analysis. A mesh of 20�2 MITC9
elements is used. ��

���
is taken to be 0)02. The speci"ed volume fraction is 60%.

Corresponding to this volume fraction, our starting design has a uniform thickness of
0)3 cm. The "rst three natural frequencies of the starting design obtained from the "nite
element model are 1589)8, 9918)1 and 27624)4 rad/s. We consider two cases:

(1) The driving frequency is less than the "rst natural frequency; we consider a value of
�( "500 rad/s.

(2) The driving frequency is more than the "rst natural frequency but less than the second
natural frequency; we consider a value of �( "2500 rad/s.

The resulting topologies are shown in Figure 2(a) and 2(b). The dynamic compliance
reduces from 5)93�10�
 to 6)03�10�� W in the "rst case, while it reduces from 5)59�10�	

to 1)83�10�
 W in the second case. The "rst three natural frequencies of the optimal
topology shown in Figure 2(a) are 4416)7, 17 840 and 34 602)7 rad/s, while those for the
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design in Figure 2(b) are 198, 8656 and 26 035 rad/s. Thus, as intended, the optimization
strategy moves the natural frequencies of the structure away from the driving frequency in
a very substantial way.

The topology in Figure 2(a) is almost the same as the optimal topology which minimizes
the static compliance when a static distributed end load of 1)5 N/cm is applied (Figure 2(c)).
Even though our de"nition of dynamic compliance does not reduce to the de"nition of the
static compliance when �( "0, the optimal topologies for driving frequencies �( P0 do
result in statically sti! structures since at least the "rst few natural frequencies are driven
towards higher values.

The designs corresponding to the three cases shown in Figure 2(a}c) for a re"ned mesh of
density 40�4 are shown in Figure 3(a}c). The "rst three natural frequencies of the starting
design are 1589)5, 9916 and 27 616)4 rad/s. For the "rst case, the dynamic compliance
reduces from 5)93�10�
 to 5)26�10�� W, while for the second one, it reduces from
5)58�10�	 to 1)68�10�
 W. The "rst three natural frequencies of the design in Figure 3(a)
are 4634, 17 948 and 38 649 rad/s, while those for the design in Figure 3(b) are 179)9, 8611
and 26 939 rad/s. A comparison of Figures 2 and 3 seems to indicate that the dynamic
problem is ill-posed just like its static counterpart; it can be made well-posed by adding
a constraint on the perimeter [3].

As to a "rst approximation, the topologies in Figure 2(a) and 2(b) can be taken to be the
tapered beams shown in Figure 4. Similar results for weight minimization of beam
structures subject to stress constraints have been reported by Johnson [21]. When the "rst
natural frequency is more than the driving frequency, the optimization process moves it
away from the driving frequency thus producing a &&sti!'' structure as shown in Figure 4(a).
On the other hand, in the second case, the optimization process moves the "rst natural
frequency towards zero resulting in a structure which is statically speaking &&#exible'', but
dynamically speaking &&sti!'' as shown in Figure 4(b). Johnson [21] provides the following
physical explanation for this non-intuitive design*the increased tip thickness generates an
Figure 3. Density distribution for the cantilever beam example with the same data as in Figure 2, but with
a re"ned mesh.



Figure 4. Approximation to the topologies in Figures 2(a) and 2(b).
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inertial force that counteracts the driving force by acting out of phase with it, and thus
relieves the stresses in the structure. In this case, one has to be careful to choose an
appropriately high value of �

	��
, since, in a practical situation, the structure will pass brie#y

through resonance while the driving frequency is being increased from zero to its "nal value
of 2500 rad/s. Note that our objective function is designed to reduce vibrations in the steady
state, and care has to be taken that the structure does not fail in the transient stage
preceding this steady state.

Since our strategy is gradient based, the optimum design (which is a local optimum) is
strongly dependent on the choice of the starting design. Thus, with a choice of a beam of
uniform thickness as the starting design when �( "2500 rad/s, the optimization strategy
leads us to the designs in Figures 2(b) and 3(b), which are statically speaking, #exible. Since
this may be undesirable, one can "rst solve the static compliance optimization problem to
generate the designs in Figures 2(c) and 3(c), and then use them as starting designs to
minimize the dynamic compliance when �( "2500 rad/s. In this manner, at least in some
cases, it may be possible to get an optimum design that is &&sti!'' from both a static and
dynamic viewpoint.

We now consider the minimization of the amplitude of vibration at the centre of the
loaded end of the beam. For the sake of comparison of the optimum designs, we use the
same starting design and meshes as in the dynamic compliance minimization case. The
move limit, ��

���
, is taken to be 0)01 and 0)02 for the coarse and "ne mesh models,

respectively. The converged topologies obtained using the coarse mesh when �( "500 and
�( "2500 rad/s are shown in Figure 5(a) and 5(b) respectively. When �( "500 rad/s, the
amplitude reduces from a value of 0)1159 mm for the starting design to 0)03929 mm for the
optimum design, while the "rst three natural frequencies for the optimal design are 3515)6,
17 746)7 and 43 208)6 rad/s. Again, we see that the optimization process moves the natural
frequencies away from the driving frequency in a substantial way. With the dynamic
compliance as the objective function, the amplitude reduces from 0)1159 to 0)0459 mm. As
expected, the amplitude reduction is larger in the former case, albeit, only marginally.
Although the di!erence is marginal in this particular case, we will see in the next case (when
�( "2500 rad/s) that it can be quite large.

For �( "2500 rad/s, the amplitude of vibration reduces from 6)575�10�� to
8)03�10�
 mm (a reduction by a factor of 80!) and 0)0216 mm (a reduction by a factor of 3),
with the response amplitude and dynamic compliance as the objective functions respectively.
The "rst three natural frequencies for the optimal design shown in Figure 5(b) are 221)4,



Figure 5. Density distribution for the cantilever beam example with frequency response amplitude optimization:
(a) �( "500 rad/s, (b) �( "2500 rad/s.

Figure 6. Density distribution for the cantilever beam example with the same data as in Figure 5, but with
a re"ned mesh.
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3426)8 and 18 626)3 rad/s. Now, we see that the "rst natural frequency is driven towards
zero, while the second natural frequency approaches the driving frequency. Thus, the
optimizer reduces the amplitude of vibration by modifying the starting design which
vibrates predominantly in the "rst mode to a design which vibrates predominantly in the
second mode. We would like to emphasize, however, that the dramatic reduction in
amplitude at the end section is at the expense of an increased amplitude at other sections,
e.g., the section midway between the two edges of the beam. Naturally, this does not happen
with the dynamic compliance as the objective function; as can be seen from Figure 2(b), the
struts at the edges of the beam prevent the amplitude at the midsection from increasing,
which is consistent with the objective of reducting vibrations in an overall sense. Thus, as
expected, and as pointed out in reference [19], the sound power reduction using the
frequency response amplitude as the objective function is not as much as that obtained
using the dynamic compliance. We note, however, that in certain aspects, the designs
obtained with the amplitude and the dynamic compliance minimization strategies are
similar; the designs in Figures 2(a) and 5(a) are from a static compliance viewpoint, sti!,
while those in Figures 2(b) and 5(b) are #exible.

The optimal designs for the two load cases discussed above obtained using the re"ned
mesh are shown in Figure 6(a) and 6(b). For �( "500 rad/s, the amplitude of vibration



Figure 7. Domain and loading conditions for the plate example.
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reduces from 0)11596 to 0)0351 mm, while for �( "2500 rad/s, it reduces from 6)572�10��

to 9)07�10�
 mm.

Example 2 (Simply supported plate). We consider a simply supported square plate of
dimension 32 cm and h

	��
"1 cm and loaded at the centre (see Figure 7). The speci"ed

volume fraction is 60%. Corresponding to this fraction, the starting design is taken to be
a uniform plate of thickness 0)6 cm. Due to the symmetry of the structure and loading, we
consider only a quarter of the plate for the analysis, and discretize it using an 8�8 uniform
mesh of MITC9 elements. The "rst four natural frequencies are 1787)1, 8894)7, 8894)7 rad/s
and 15 945)3 rad/s. We consider two cases:

(1) The load is given by 80 cos 5000tN.
(2) The load is given by 80 (cos 5000t#cos 15 000t) N.

Choosing ��
���

"0)02, the optimal topology for the "rst case is shown in Figure 8(a).
There is a reduction of dynamic compliance from 0)0155 to 3)43�10�	 W. The "rst four
natural frequencies of the optimal design are 893)4, 9749, 9758)4 and 12 827)6 rad/s. Note
that the driving frequency moves the "rst and second natural frequencies away from it. The
fourth natural frequency reduces from 15945)3 to 12 827)6 rad/s in this case. However, in
the second case, due to the frequency component of 15 000 rad/s in the loading, one would
expect the fourth natural frequency to increase. The e!ect on the second and third natural
frequencies is, however, unpredictable, since the 5000 and 15 000 rad/s components in the
loading counteract each other. The "rst four natural frequencies of the optimal design for
the second case shown in Figure 8(b) are 1347, 8095, 8513)5 and 22 462)2 rad/s. The dynamic
compliance reduces from 0)253 W for the starting design to 0)0107 W for the optimal one.
The optimal design under a static load of 80 N is shown in Figure 8(c). The corresponding
results for a "ne mesh with a 16�16 grid and ��

���
"0)04 are shown in Figure 9. Note the

similarity of the topologies in Figures 8 and 9.
For the frequency response optimization, we assume the load to be 80 cos 5000tN, and

consider two cases: (1) the amplitude of vibration is to be minimized at points A and
B which lie midway between the point of loading and the top and bottom edges as shown in
Figure 7, (2) the amplitude is to be minimized at point A alone. Due to the symmetry of the
loading, geometry, and points at which the amplitude is to be minimized in the "rst case, we
consider only a quarter of the plate for the analysis, and discretize it using "rst an 8�8 and
then a 16�16 uniform mesh of MITC9 elements. We choose ��

���
to be 0)02 and 0)04 for the



Figure 8. Density distribution for the simply supported plate example with dynamic compliance optimization in
cases (a) and (b) and static compliance optimization in case (c): (a) �( "5000 rad/s; (b) �(

�
"5000 rad/s, �(

�
"15 000

rad/s; (c) �( "0 rad/s.

TOPOLOGY DESIGN OF STRUCTURES 705
coarse and "ne mesh models respectively. The topologies obtained using the coarse and "ne
mesh for the "rst case are shown in Figure 10(a) and 10(b) respectively. In the coarse mesh
model, the amplitude of vibration reduces from 2)435�10�	 to 6)992�10�� mm while in
the "ne mesh one it reduces from 2)4345�10�	 to 8)647�10�� mm, which is a reduction by
a factor of about 30. However, at the point of loading, the amplitude increases from
5)91�10�
 to 3)941�10�	 mm, and from 6)15�10�
 to 5)36�10�	 mm in the coarse and
"ne mesh models respectively. Using the dynamic compliance as the objective function, the
amplitude at points A and B in the coarse mesh model reduces from 2)435�10�	 to
1)535�10�	 mm which is not as dramatic a reduction as with the amplitude as objective
function, but, as expected, at the point of loading, the amplitude reduces from 5)91�10�
 to
5)50�10�
 mm.



Figure 9. Density distribution for the simply supported plate example with the same data as in Figure 8, but
with a re"ned mesh.
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When amplitude minimization is desired at point A alone, we can no longer consider only
a quarter of the plate for analysis, since the design can be unsymmetric with respect to the
x-axis. However, we may still model only the right or left half of the plate in order to reduce
the computational cost. Using the same mesh density as in the coarse mesh model above, we
get the design shown in Figure 11. Since the constraint requiring that the amplitude at point
B be minimized has been relaxed, one would expect the reduction in amplitude at point A to
be more than in the case considered above. We indeed "nd this to be the case; the amplitude
at A now reduces from 2)435�10�	 to 2)630�10�� mm, which is a reduction by a factor of
about 93.

From the topologies presented, it appears that the amplitude minimization problem
results in predominantly &&grey'' optimal designs (i.e., large regions of the designs have
intermediate densities), in contrast to the dynamic compliance problem which results in
&&black and white'' topologies.



Figure 10. Density distribution for the plate example with �( "5000 rad/s and amplitude minimization desired
at points A and B: (a) coarse mesh, (b) "ne mesh.
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7. CONCLUSIONS

We have introduced a new measure for the &&dynamic compliance'', minimization of which
reduces the vibrations of structures subjected to periodic loading in a global sense, and



Figure 11. Density distribution for the plate example with �( "5000 rad/s and amplitude minimization desired
at point A alone.
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hence which is likely to have implications from the viewpoint of noise reduction. The
structure of the formulation is very similar to that of a static compliance minimization
problem. We have also presented the topology design formulation for minimizing
the frequency response amplitudes at a user-de"ned point in the structure. Due to the
availability of analytical expressions for the sensitivities, the proposed optimization method
for both measures is e$cient. The numerical examples presented illustrate that, as intended,
the measures are e!ective in reducing the vibrations in a global or local sense.
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